Sqoop, Hive and Impala for Data Analysts (Formerly CCA 159)

Why take this course?
在这个课程中,我们将深入了解如何使用Apache Sqoop来导出数据从HDFS或Hive到MySQL数据库,以及如何设置增量加载。此外,我们还将探索Hive和Impala的查询语言,以便在Hadoop集群上进行数据分析。以下是这个课程的详细内容:
1. Sqoop Export Overview
- Introduction to Sqoo Export: 了解Sqoop导出的基本概念和用途。
- Prepare Data for Sqoop Export: 准备HDFS或Hive数据以便于Sqoop导出。
- Create Table in MySQL for Sqoop Export: 在MySQL中创建目标表。
- Perform Simple Sqoop Export from HDFS to MySQL table: 执行基本的Sqoop导出操作。
- Understanding Execution Flow of Sqoop Export: 分析Sqoop导出的执行流程。
- Specifying Number of Mappers for Sqoop Export: 设置并发映射器以优化导出性能。
- Troubleshooting the Issues related to Sqoop Export: 解决Sqoop导出过程中可能遇到的问题。
- Merging or Upserting Data using Sqoop Export - Overview: 理解如何使用Sqoop导出处理数据合并(Merge)和上更新(Upsert)操作。
- Quick Overview of MySQL - Upsert using Sqoop Export: MySQL的快速概述以及如何进行上更新操作。
- Update Data using Update Key using Sqoop Export: 使用Sqoop导出更新数据,通过更新键指定记录。
- Merging Data using allowInsert in Sqoop Export: 启用允许插入(allowInsert)进行数据合并。
- Specifying Columns using Sqoop Export: 指定导出时使用的列。
- Specifying Delimiters using Sqoop Export: 为了确保数据正确导出,指定分隔符和列分隔符。
- Using Stage Table for Sqoop Export: 在数据导出过程中使用暂存表(Stage Table)。
2. Submitting Sqoop Jobs and Incremental Sqoop Imports
- Introduction to Sqoop Jobs: 了解Sqoop作业的概念。
- Adding Password File for Sqoop Jobs: 设置密码文件以便于Sqoop作业执行。
- Creating Sqoop Job: 创建Sqoop作业以自动化数据移动任务。
- Run Sqoop Job: 执行Sqoop作业。
- Overview of Incremental Loads using Sqoop: 了解Sqoo的增量加载功能。
- Incremental Sqoop Import - Using Where: 使用WHERE子句进行增量加载。
- Incremental Sqoop Import - Using Append Mode: 使用附加模式(Append Mode)进行增量加载。
- Incremental Sqoop Import - Create Table: 在目标数据库中创建表以用于增量加载。
- Incremental Sqoop Import - Create Sqoop Job: 创建一个Sqoop作业以实现定期的增量数据同步。
- Incremental Sqoop Import - Execute Job: 执行Sqoop作业来加载数据。
- Incremental Sqoop Import - Add Additional Data: 如何在已经存在的数据上执行增量加载。
- Incremental Sqoop Import - Rerun Job: 如何重新运行Sqoop作业以同步新的数据变化。
- Incremental Sqoop Import - Using Last Modified: 使用最后修改时间戳进行增量加载。
Data Analysis with Hive and Impala
- Use Query Language (QL) in Hive and Impala: 在Hive和Impala中编写查询以分析数据。
- Writing Complex Queries: 编写复杂的查询来处理数据集。
- Performing Data Aggregations: 进行数据聚合,如计算总和、平均值等。
- Analyzing Data Trends: 分析数据趋势,如使用时间序列分析。
Hive and Impala Optimization Techniques
- Optimizing Query Performance: 优化查询性能的技巧和最佳实践。
- Partitioning Data in Hive: 在Hive中分区数据以提高查询效率。
- Using Bucketing in Hive: 在Hive中使用桶化来优化查询性能。
Course Practicals and Real-World Examples
- Hands-on Practice with Sqoop, Hive, and Impala: 实际操作Sqoop、Hive和Impala来解决实际问题。
- Case Studies: 分析实际案例,理解如何在复杂的生态系统中应用这些工具。
- Troubleshooting and Optimization: 遇到问题时如何诊断和优化。
Final Project
- Capstone Project: 设计和实现一个综合性项目,将所学的Sqoop、Hive、Impala等技术应用于实际的数据导入/导出和数据分析场景。
在这个课程中,你将获得对Apache Sqoop、Hive和Impala的深入了解,并能够在实际的工作环境中有效地使用这些工具来处理大规模数据集,进行数据分析和优化查询性能。通过实践和案例研究,你将能够解决实际问题,并准备好在生产环境中应用所学知识。
Loading charts...
Comidoc Review
Our Verdict
Udemy's 'Sqoop, Hive and Impala for Data Analysts' course boasts an extensive curriculum that targets essential tools for working with big data. Combined with a knowledgeable instructor, engaging teaching style, and real-world applications, this course is a solid choice for learners. However, challenges emerge through inconsistent quality of notes and organization while the fast-paced instruction accompanied by a strong accent may deter some students from fully embracing the learning experience.
What We Liked
- Comprehensive coverage of Big Data ecosystem tools like Sqoop, Hive, and Impala, with real-world applications demonstrated.
- Instructor's teaching style is engaging, easy to follow, and includes practical examples and hands-on exercises.
- Covers both basics and advanced topics such as data modeling and performance optimization.
- Provides a solid understanding of HDFS commands and concepts, block size, replication factor, etc.
Potential Drawbacks
- Notes contain minimal information and could benefit from more detailed examples or solutions to exercises.
- Some students find the instructor's accent difficult to understand; pace of instruction is considered fast in general.
- Lacks a well-organized structure, with some topics repetitive and others not comprehensively covered.