データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)

統計学の中で最もよく使われる仮説検定の原理を理解して、現実の問題解決のための3つのスキル(①アクションプランとリスク対策の立案、➁パラメトリック検定とノンパラメトリック検定の併用、③統計解析ソフトの活用)を手に入れよう。
4.28 (74 reviews)
Udemy
platform
日本語
language
Data Science
category
instructor
データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)
561
students
2.5 hours
content
Jun 2025
last update
$19.99
regular price

Why take this course?

🧠 データサイエンス実戦講座 第2回: 仮説検定の徹底理解とp値によるリスク対策(前編)

🚀 はじめに: Statistics, the backbone of Data Science, is not just about algorithms or complex calculations. It's about making informed decisions based on data evidence. In this course, we dive deep into one of the most fundamental and widely used statistical methods: Hypothesis Testing. By applying this method to real-world scenarios, you'll learn to make data-driven decisions that can significantly impact problem-solving in various fields.

🔍 仮説検定の基礎とその応用 This course is structured to take you through the intricacies of Hypothesis Testing, a key component in statistical analysis that goes beyond simply proving or disproving an idea. You'll learn:

  • アクションプランとリスク対策の立案 (①) Understanding that statistical testing is not just about proving "true" or "false," but rather about predicting the probability of a hypothesis being true or false, this course teaches you to develop action plans and risk mitigation strategies for all four combinations of true/false and right/wrong outcomes.

  • パラメトリック検定とノンパラメトリック検定の併用 (➁) Not all real-world data follows a normal distribution. This course bridges the gap by teaching you when and how to use both Parametric Tests, which assume data normality, and Non-Parametric Tests, which are suitable for datasets with asymmetric distributions or outliers. Mastering these techniques will enhance your analytical skills.

  • 統計解析ソフトの活用 (③) Knowledge without practical application is futile. This course equips you with hands-on experience using JASP, a free statistical analysis software developed by the University of Amsterdam. Through guided exercises, you'll apply your knowledge to real datasets and sharpen your analytical skills.

📚 课程概要 In this first part (前編) of the course, we will cover the basics of Hypothesis Testing, including understanding Type I and Type II errors, and conducting a single-sample hypothesis test. The subsequent second part (後編) will delve into more complex scenarios involving two or more samples.

🔑 統計学の鍵となる役割 As we explore the vast landscape of modern Data Science, it's crucial to understand that the core of advanced technologies like AI and machine learning is rooted in robust statistical foundations. This course lays down the classical (frequentist) statistical principles that have stood the test of time and are now integral to the Big Data era and the rise of Bayesian statistics.

🌟 まとめ: By mastering the fundamentals of hypothesis testing and understanding how to manage risks through statistical analysis, you'll be well-equipped to tackle complex data science challenges. This course is a stepping stone to applying these principles in real-world scenarios and paves the way for you to stay ahead in the ever-evolving field of Data Science.

📆 登録は今すぐ! Don't miss this opportunity to build a strong foundation in statistical analysis that will empower your decision-making process and enhance your Data Science skillset. Enroll now and take the first step towards becoming a master of data!

Course Gallery

データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編) – Screenshot 1
Screenshot 1データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)
データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編) – Screenshot 2
Screenshot 2データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)
データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編) – Screenshot 3
Screenshot 3データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)
データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編) – Screenshot 4
Screenshot 4データサイエンス実戦講座[第2回]仮説検定の徹底理解とp値によるリスク対策(前編)

Loading charts...

5474310
udemy ID
31/07/2023
course created date
07/09/2023
course indexed date
Bot
course submited by